Silicone grease, sometimes called dielectric grease, is a waterproof grease made by combining a silicone oil with a thickener. Most commonly, the silicone oil is polydimethylsiloxane (PDMS) and the thickener is amorphous fumed silica. Using this formulation, silicone grease is a translucent white viscous paste, with exact properties dependent on the type and proportion of the components. More specialized silicone greases are made from fluorinated silicones or, for low-temperature applications, PDMS containing some phenyl substituents in place of methyl groups. Other thickeners may be used, including stearic acid and powdered polytetrafluorethylene (PTFE).Thorsten Bartels et al. "Lubricants and Lubrication" in Ullmann's Encyclopedia of Industrial Chemistry, 2005, Weinheim. . Greases formulated from silicone oils with silica thickener are sometimes referred to as silicone paste to distinguish them from silicone grease made with silicone oil and a soap thickener.
Silicone grease is soluble in organic solvents such as toluene, xylene, , and chlorinated hydrocarbons. It is insoluble in methanol, ethanol, and water.
Thermal grease often consists of a silicone-grease base, along with added thermally conductive fillers. It is used for heat-transfer abilities, rather than friction reduction.
Pure silicone grease is widely used by the plumbing industry in faucets and seals, as well as in dental equipment. This is because it is not an ingestion hazard. Electrical utilities use silicone grease to lubricate separable elbows on lines that must endure high temperatures. Silicone greases generally have an operating temperature range of approximately with some high-temperature versions extending this range slightly.
Lubrication of an apparatus with silicone grease may result in the reaction mixture being contaminated with the grease. The impurity may be carried through purification by chromatography in undesirable amounts. In NMR spectroscopy, the methyl groups in polydimethylsiloxane display 1H and 13C chemical shifts similar to trimethylsilane (TMS), the reference compound for those forms of NMR spectroscopy. As with TMS, the signal is a singlet. In 1H NMR, silicone grease appears at a singlet at δ = 0.07 ppm in CDCl3, 0.09 in CD3CN, 0.29 in C6D6, and −0.06 ppm in (CD3)2SO. In 13C NMR, it appears at δ = 1.19 ppm in CDCl3 and 1.38 ppm in C6D6. Tables of impurities commonly found in NMR spectroscopy have been prepared, and such tables include silicone grease.
A common use of this type is in the high-voltage connection associated with gasoline-engine , where grease is applied to the rubber boot of the plug wire or the ignition coil to help it slide onto the ceramic insulator of the plug, to seal the rubber boot, and to prevent the rubber's adhesion to the ceramic. Such greases are formulated to withstand the high temperature generally associated with the areas in which spark plugs are located, and can be applied to contacts as well (because the contact pressure is sufficient to penetrate the grease film). Doing so on such high-pressure contact surfaces between different metals has the further advantage of sealing the contact area against electrolytes that might cause rapid deterioration of the metals by galvanic corrosion.
Silicone grease can decompose to form an insulating layer at or next to switch contacts that experience arcing, and contamination can cause the contacts to prematurely fail.
Some divers may use high partial pressure 'enriched' gas mixes containing more than the usual ~21% of Oxygen present in air as one of the ways to reduce the risk of decompression sickness, "the bends", on certain types of dive. Also, oxygen equipment between 60% and 100% is used to 'accelerate' decompression obligations. Silicone grease is used due to the risk that some non-silicone greases can spontaneously combust in the presence of high concentrations of oxygen.
|
|